Local Linear Regression for Data with AR Errors.
نویسندگان
چکیده
In many statistical applications, data are collected over time, and they are likely correlated. In this paper, we investigate how to incorporate the correlation information into the local linear regression. Under the assumption that the error process is an auto-regressive process, a new estimation procedure is proposed for the nonparametric regression by using local linear regression method and the profile least squares techniques. We further propose the SCAD penalized profile least squares method to determine the order of auto-regressive process. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed procedure, and to compare the performance of the proposed procedures with the existing one. From our empirical studies, the newly proposed procedures can dramatically improve the accuracy of naive local linear regression with working-independent error structure. We illustrate the proposed methodology by an analysis of real data set.
منابع مشابه
Liu Estimates and Influence Analysis in Regression Models with Stochastic Linear Restrictions and AR (1) Errors
In the linear regression models with AR (1) error structure when collinearity exists, stochastic linear restrictions or modifications of biased estimators (including Liu estimators) can be used to reduce the estimated variance of the regression coefficients estimates. In this paper, the combination of the biased Liu estimator and stochastic linear restrictions estimator is considered to overcom...
متن کاملDiagnostic Measures in Ridge Regression Model with AR(1) Errors under the Stochastic Linear Restrictions
Outliers and influential observations have important effects on the regression analysis. The goal of this paper is to extend the mean-shift model for detecting outliers in case of ridge regression model in the presence of stochastic linear restrictions when the error terms follow by an autoregressive AR(1) process. Furthermore, extensions of measures for diagnosing influential observations are ...
متن کاملLinear trimmed means for the linear regression with AR(1) errors model
For the linear regression with AR(1) errors model, the robust generalized and feasible generalized estimators of Lai et al. (2003) of regression parameters are shown to have the desired property of a robust Gauss Markov theorem. This is done by showing that these two estimators are the best among classes of linear trimmed means. Monte Carlo and data analysis for this technique have been perform...
متن کاملState Space Local Linear Prediction
Local linear prediction is one of several methods that have been applied to prediction of real time series including financial time series. The difference from global linear prediction is that, for every single point prediction, a different linear autoregressive (AR) model is estimated based only on a number of selected past scalar data segments. Geometrically, these data segments correspond to...
متن کاملWeighted Quantile Regression for AR model with Infinite Variance Errors.
Autoregressive (AR) models with finite variance errors have been well studied. This paper is concerned with AR models with heavy-tailed errors, which is useful in various scientific research areas. Statistical estimation for AR models with infinite variance errors is very different from those for AR models with finite variance errors. In this paper, we consider a weighted quantile regression fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta mathematicae applicatae Sinica
دوره 25 3 شماره
صفحات -
تاریخ انتشار 2009